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Abstract
In the context of contact geometry, we investigate one aspect of the symmetry of
thermodynamics. If with a thermodynamic system with n degrees of freedom
we associate a (2n+ 1)-dimensional thermodynamic phase space then we show
that the structure group of its tangent bundle can be reduced to the group
U(n) × 1.

PACS numbers: 05.90.+m, 02.20.−a, 02.40.Hw

1. Introduction

Geometric aspects have always played an important role in the development of every physical
theory. Classical mechanics, electrodynamics and, first of all, special and general relativity
provide the most prominent examples of such physical theories. Also thermodynamics since
the works of Gibbs owed much to geometry. In fact, the first papers of Gibbs dealt with
geometric formulation of thermodynamics. The ideas of Gibbs are presented in excellent
books by Callen [1, 2]. The underlying concepts in Gibbs’ approach are now called the Gibbs
space and fundamental relation. It is well known that for a fluid thermodynamic system
having n degrees of freedom, the Gibbs space (GS) is an open region in R

n+1 with standard
coordinates U, S, V,N, . . . denoting internal energy, entropy, volume, number of particles and
so on. The states of thermodynamic systems are then represented by n-dimensional surfaces
given either as U = U(S, V,N, . . .) or as S = S(U, V,N, . . .) or as G = G(T , P,N, . . .)

etc, i.e. in the energy, entropy, Gibbs potential, etc representations. In differential form these
relations are given as dU = T dS −P dV + µ dN + · · · , or dS = 1

T
dU + P

T
dV − µ

T
dN + · · ·

or as dG = −S dT + V dP + µ dN + · · ·, etc. As usual T denotes absolute temperature, P
pressure, µ chemical potential, etc; geometrically they describe the slope of tangent planes to
the surface of states. Of course, other representations can also be used, and in fact they may
be more convenient in particular cases than the energy or entropy representation. Legendre
transformations provide one class of representations (or potentials) connected to the energy
representation and another class of representations connected to the entropy representation.
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Unfortunately, neither classes of potentials are connected by Legendre transformations,
although they are connected by more general contact transformations.

However, the problem was that GS had no distinguished geometrical structure. This
made it impossible, for instance, to define specific vector fields or brackets of functions on
GS, or to find the most general group of symmetries of thermodynamics. The formulation of
classical thermodynamics was for a long time not comparable with the symplectic formulation
of classical mechanics [3, 4].

Hermann in 1973 [5] proposed to formulate thermodynamics in the framework of contact
geometry which is an odd-dimensional counterpart of symplectic geometry. This idea was
developed in [6] and in many other papers, see e.g. [7]. The approach based on contact
geometry proved to be very fruitful for thermodynamics. In general terms, to make the
situation in thermodynamics similar to that in mechanics, one needs the notion of the so-called
thermodynamic phase space (TPS). Roughly speaking, for a thermodynamic system having n
degrees of freedom, TPS is a (2n + 1)-dimensional manifold endowed with a contact structure
defined by the Gibbs 1-form θ , see [8] and the references therein. As a contact form one can
chose θU = dU − T dS + P dV − µ dN + · · · or θS = dS − 1

T
dU − P

T
dV + µ

T
dN + · · · or

any other differential 1-form of this type, but in each of them all the 2n + 1 thermodynamic
parameters are treated as independent. Because of this all these forms are non-degenerate on
TPS and define on it the so-called contact structure (see the next section).

The contact structure of TPS allows us to construct thermodynamic theory in a way similar
in many respects to analytical mechanics. First of all it allows us to find the most general
group of symmetries of classical thermodynamics and go beyond Legendre transformations.
This group is the group of contact transformations [3, 4]; it is a counterpart of the symplectic
group used in analytical mechanics but acting on an odd-dimensional space. Let us mention
here that the well-known Legendre transformations form a subgroup of the group of contact
transformations. Further, the contact structure of TPS allows one to associate a vector
field Xf with any smooth function (contact Hamiltonian) f on TPS. The set of all Xf s
forms a Lie algebra. Each vector field Xf generates a 1-parameter group of continuous
transformations of TPS (a flow on TPS), and thus represents a continuous symmetry of the
thermodynamic formalism. For special choices of f , the flows associated with Xf can
even represent various thermodynamic processes. For quite arbitrary (but smooth) functions
f , the flows associated with Xf map (deform) some thermodynamic surfaces into other
thermodynamic surfaces and thus establish a correspondence between states for different
systems. A few examples of f and Xf are given in section 3. For a more detailed analysis
of this topic and for more examples of Xf s and their integral curves we refer the reader to
[8–11].

The contact structure of TPS also allows us to introduce Riemannian or pseudo-
Riemannian metrics on TPS [8, 12] in a sense compatible with the contact structure. Two
examples of metrics are given in section 4. So far the meaning of these metrics on the whole
(2n+ 1)-dimensional TPS is not quite clear; however one of them, if reduced to n-dimensional
thermodynamic surfaces (Legendre submanifolds) given by equation θ = 0 appears to be
equivalent to thermodynamic metrics considered by many authors for more than 30 years.

In section 2 we discuss some facts about contact geometry in the form to be used in
section 4 which contains the main result of the paper.

2. Contact manifolds

In this section we present briefly a few basic facts about contact geometry [3, 4, 13, 14].
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Definition 1. A differentiable (2n+1)-dimensional manifold M is said to be a contact manifold
if it carries a global differential 1-form θ such that

θ ∧ (dθ)n �= 0, (1)

θ is called the contact form.

Here ∧ denotes the exterior product, i.e. antisymmetrized tensor product defined as
df ∧ dg = (1/2)(df ⊗ dg − dg ⊗ df ), and

(dθ)n = dθ ∧ · · · ∧ dθ (n times). (2)

Condition (1) means that θ is non-degenerate. According to the Darboux theorem [3, 14] this
means that there exist on M 2n + 1 local canonical (or contact) coordinates

x0;p1, . . . , pn; x1, . . . , xn (3)

in which θ has the simplest (canonical) form

θ = dx0 + pi dxi, i = 1, . . . , n. (4)

From now on we shall use the summation convention, i.e. summation over repeated indices.
Condition (1), meaning that θ is non-degenerate, can be geometrically interpreted in several
ways. The simplest and the most obvious one tells that � := θ ∧ (dθ)n is proportional to the
volume form on M (it should not be confused with the physical volume V occurring in θU

or θS).
Another consequence of condition (1) is that the 1-form θ defines on M two remarkable

complementary distributions, i.e. two different fields of tangent planes of dimensions smaller
than 2n + 1, or two different subbundles over M of the tangent bundle T M . The existence of
these distributions is crucial for this paper.

The first one is the 2n-dimensional distribution D, i.e. a field of tangent 2n-dimensional
hyperplanes Dx such that

D =
⋃
x∈M

Dx, Dx = {X ∈ TxM : θ(X) = 0}, (5)

where X denotes a vector field on M and TxM is the tangent space to M at the point x ∈ M . In
other words, the distribution D is defined by the kernel ker θ of the form θ . This distribution
is also called a 2n-plane bundle. Locally, D can be given by 2n vector fields, e.g. by [8]

Pk = ∂/∂pk, Xk = ∂/∂xk − pk∂/∂x0, k = 1, . . . , n. (6)

It is obvious from (4) that Pk and Xk annihilate θ . The distribution D is usually called a contact
distribution or a contact structure on M [3, 14].

Let us remark that the contact structure D is not given by a unique 1-form θ . If τ is a
non-vanishing function on M, then the 1-form τθ also satisfies condition (1) because

τθ ∧ (d(τθ))n = τn+1θ ∧ (dθ)n �= 0, (7)

and defines the same field D of tangent hyperplanes. Because of this some authors define
contact structure in terms of a non-degenerate field of tangent hyperplanes rather than in terms
of θ ; for details see e.g. [3].

The second distribution, in a sense dual to the first one, is the one-dimensional
characteristic distribution � defined by a global characteristic vector field ξ such that

iξ dθ = 0, iξ θ ≡ θ(ξ) = 1, (8)

or equivalently iξ (θ ∧ (dθ)n) = (dθ)n, where iξ denotes the internal product (contraction) (of
θ and dθ ) with ξ . Thus � is defined by ker dθ , i.e. the kernel of dθ . The condition iξ θ = 1
means only normalization of ξ . In the contact coordinates (3)

ξ = ∂/∂x0. (9)
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Thus, T M = D ⊕ � = ker θ ⊕ ker dθ , where, as it was mentioned above, D and � are two
complementary vector subbundles of T M (summation is fibrewise, i.e. TxM = Dx ⊕ �x,

x ∈ M).
The fields (6) and (9) satisfy the following commutation relations [8]:

[Xi ,Xj ] = [Pi ,Pj ] = [Xi , ξ ] = [Pi , ξ ] = 0, [Xi ,Pj ] = δij ξ. (10)

The last of these commutators shows that the distribution D is not involutive; and this is
another geometrical aspect of condition (1). The fact that D is not involutive means that
the contact distribution is not maximally integrable, i.e. the field of tangent hyperplanes D
does not have 2n-dimensional integral manifolds. Actually, condition (1) means that the field
D is maximally non-integrable [3], i.e. the maximal dimension of integral manifolds of D
(or, equivalently, integral manifolds of equation θ = 0) is n.

The existence of n-dimensional integral (sub)manifolds is guaranteed because they may
be given for instance by n + 1 equations xi = Ci , i = 0, 1, . . . , n, where Ci are arbitrary
constants, or by n + 1 equations

x0 = φ(x1, . . . , xn), pi = −∂φ(x1, . . . , xn)

∂xi
, i = 1, . . . , n. (11)

In the first of these equations one recognizes the most standard form of fundamental relation,
and equations of state in the remaining equations [1, 2].

More generally, one can easily prove [3, 8] that for any partition I ∪ J of the set of
indices {1, . . . , n} into two disjoint subsets I and J , and for a function φ(pI , x

J ) of n variables
{pi, x

j }, i ∈ I, j ∈ J , the n + 1 equations

x0 = φ − pi

∂φ

∂pi

, pj = − ∂φ

∂xj
, xi = ∂φ

∂pi

(12)

define a Legendre submanifold in M2n+1. (Legendre submanifolds will be denoted by S.)
Conversely, every Legendre submanifold of (M2n+1, θ) in a neighbourhood of any point is
defined by these equations for at least one of the 2n possible choices of the subset I. In
equations (12) one recognizes the fundamental relation, equations of state and Legendre
transforms. These equations for Legendre (sub)manifolds can be used e.g. in the process of
reducing Riemannian metrics from the full TPS to the so-called thermodynamic surfaces.

3. Contact transformations of TPS

Of primary interest for this paper is the group 	 of diffeomorphisms of M which preserve
its contact structure. Apart from discrete transformations we can also consider continuous
diffeomorphisms as well as their infinitesimal counterparts, i.e. vector fields (generators)
associated with these diffeomorphisms.

Definition 2. A diffeomorphism λ : M → M is said to be a contact diffeomorphism if it
preserves the contact distribution D of M, i.e. λ is such that

λ∗θ = ρθ, λ ∈ 	, (13)

where ρ is a non-vanishing function on M and λ∗ is the pull-back map [15] induced by λ.
Note that the new transformed form λ∗θ is a contact form; it is also non-degenerate

because ρθ ∧ (d(ρθ))n = ρn+1θ ∧ (dθ)n �= 0. Thus λ preserves the contact structure but does
not preserve the contact form. Diffeomorphisms with ρ = 1 preserve also the contact form
and are called strict contact transformations.
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Analogously, by a 1-parameter group of continuous contact transformations we mean a
subgroup of mappings λt : M → M of 	 which preserve the contact distribution D, i.e. λt

are such that

λ∗
t θ = ρtθ, λt ∈ 	, (14)

where again ρt is a non-vanishing function on M.
Let X be a generator of this 1-parameter subgroup of 	, that is X is in the standard way

defined by the formula

(XF)(m) = d

dt

∣∣∣∣
t=0

λ∗
t F (m) ≡ d

dt

∣∣∣∣
t=0

F(λt (m)), ∀m ∈ M, (15)

for any smooth function F on M. Hence X is a vector field whose flow is given by λt .
First we shall consider examples of continuous transformations of (M2n+1, θ). For this

we need the concept of contact vector field Xf , and its associated flow, corresponding to a
smooth function f on M2n+1.

Definition 3. By a contact vector field associated with a function f on M2n+1 we mean a
vector field Xf defined by two conditions:

iXf
θ ≡ θ(Xf ) = f, iXf

dθ = −df + (ξf )θ. (16)

It is easy to check that in the standard contact coordinates (3) Xf takes the form

Xf =
(

f − pi

∂f

∂pi

)
∂

∂x0
+

(
pi

∂f

∂x0
− ∂f

∂xi

)
∂

∂pi

+
∂f

∂pi

∂

∂xi
. (17)

Because general form of any vector field on M2n+1 is

X = ẋ0 ∂

∂x0
+ ṗi

∂

∂pi

+ ẋi ∂

∂xi
, (18)

thus, comparing the last two expressions, for the components of Xf we have

ẋ0 = f − pi

∂f

∂pi

, ṗi = pi

∂f

∂x0
− ∂f

∂xi
, ẋi = ∂f

∂pi

. (19)

Incidentally, for a constant function f = 1, X1 = ξ . One can see that the field Xf is quite
complicated, but if we ‘cut’ x0 and thus reduce M2n+1 to M2n then (19) reduces to

ṗi = − ∂f

∂xi
, ẋi = ∂f

∂pi

. (20)

The last field is well known in classical mechanics as the Hamiltonian vector field
corresponding to a Hamiltonian f : M2n → R. Because of this f : M2n+1 → R is
called a contact Hamiltonian and Xf is called a contact (Hamiltonian) vector field.

Now we give examples of f of two types. In examples 1 and 2, Xf will be tangent to the
Legendre submanifold S representing ideal gas, and thus λt can be interpreted in each case,
at least formally, as a thermodynamic process. In examples 3 and 4, Xf will be transversal to
S and will map (or ‘drag’) S for the ideal gas onto S representing another system. In fact, we
will receive a 1-parameter family of new systems.

Let us consider therefore a fluid thermodynamic system having three degrees of freedom.
Then its TPS is seven-dimensional. In the energy representation we have the following
correspondence:

(x0;p1, p2, p3; x1, x2, x3) ⇐⇒ (U ;−T , P,−µ; S, V,N), (21)
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and respectively the contact form is

θU ≡ θ = dU − T dS + P dV − µ dN. (22)

Let us repeat that unless we restrict ourselves to a three-dimensional Legendre submanifold
S (thermodynamic surface) given by equation θ = 0, all these seven variables are treated as
independent.

Example 1. For f = U − T S + RNT − µN (R is the standard gas constant), according to
(17) we have

Xf = U
∂

∂U
+ P

∂

∂P
+ RT

∂

∂µ
+ (S − RN)

∂

∂S
+ N

∂

∂N
, (23)

and hence the contact Hamilton equations (19) (defined by the components of Xf ) have the
form

U̇ = U, Ṫ = 0, ṗ = P, µ̇ = RT,

Ṡ = S − RN, V̇ = 0, Ṅ = N.
(24)

Integral curves of Xf are thus given by

U = U0 et , S = (S0 − RN0t) et , V = V0, N = N0 et ,

T = T0, P = P0 et , µ = RT0t + µ0,
(25)

where U0, S0, V0, . . . denote an initial state. One may note that for an ideal gas f = 0 and
that Xf is tangent to the Legendre submanifold S representing this system [8]. Hence
equations (25) describe a ‘thermodynamic process’ with a constant volume V0 and a
constant temperature T0. It is easy to check that during this ‘process’ all relations between
thermodynamic parameters for ideal gas are preserved, for instance

U = 3
2NRT, PV = NRT or U = T S − PV + µN. (26)

The Jacobi matrix ∂(U,T ,P,µ,S,V,N)

∂(U0,T0,P0,µ0,S0,V0,N0)
of this transformation induces a linear transformation

on fibres of the tangent bundle T M . The determinant of this matrix is equal to exp(4t).

Example 2. For f = NRT − 2
5T S − 2

5µN one obtains

Xf = −2

5
T

∂

∂T
+

(
RT − 2

5
µ

)
∂

∂µ
+

(
2

5
S − RN

)
∂

∂S
+

2

5
N

∂

∂N
, (27)

so

U̇ = 0, Ṫ = − 2
5T , ṗ = 0, µ̇ = RT − 2

5µ,

Ṡ = 2
5S − RN, V̇ = 0, Ṅ = 2

5N.
(28)

Integrating these equations we obtain

U =U0, S = (S0 − RNot) e2t/5, V =V0, N = N0 e2t/5,

T = T0 e−2t/5, P = P0, µ= (µ0 + RT0t) e−2t/5.
(29)

Again f = 0 for the ideal gas and thus equations (29) describe a ‘process’ with constant
volume, pressure and internal energy; the relations (26) are also preserved.

The determinant of the Jacobi matrix is now equal to 1, and the matrix itself is an element
of SL(7, R), and even the element of SL(6, R) × 1.

Example 3. Let us now take two very simple functions f1 = bP and f2 = −aV −1

where a and b are some non-negative constants. Then Xf1 = b∂/∂V and Xf2 =
(−a/V )∂/∂U − (a/V 2)∂/∂P are not tangent to S representing an ideal gas, so they cannot be
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treated as thermodynamic processes. The integral curves of Xf1 are such that all coordinates
are preserved but the volume V which changes according to V = V0 + bt . Therefore, flow
associated with Xf1 can be interpreted as a flow dragging S for our ideal gas into S representing
a gas of non-interacting hard spheres. This means that the deformed S represents a new system.
In fact, we get a 1-parameter family of new Legendre submanifolds St corresponding to the
gases of hard spheres. Of course this family contains our original Legendre submanifold S
representing the ideal gas for t = 0.

On the other hand, the flow λτ corresponding to Xf2 is such that it preserves all parameters
except U and P which change according to (t has been replaced by a new parameter τ )

U = U0 − a

V0
τ, P = P0 − a

V 2
0

τ. (30)

This time one can say that λτ maps ideal gas into a gas of interacting point-like particles.
An interesting situation arises if we take f = f1 + f2 = bP − aV −1. The integral curves

of Xf = Xf1 + Xf2 are such that T , S,N and µ do not change, whereas

U = U0 − a

b
ln

V0 + bt

V0
, P = P0 − at

V0(V0 + bt)
, V = V0 + bt. (31)

The equation of state for the ideal gas, P0V0 = N0RT0, is no longer preserved and after
inserting in it formulae (31) it goes over into an equation of state(

P +
at

V (V − bt)

)
(V − bt) = NRT, (32)

which for t = 1 resembles the well-known van der Waals equation of state. In fact, for fixed
a and b we have obtained a 1-parameter family of van der Waals-like gases.

Example 4. Two other versions of the van der Waals-like gases can be obtained if,
instead of one transformation induced by Xf1+f2 of example 3, we consider two consecutive
transformations: that of Xf1 followed by Xf2 and vice versa. We receive two different
2-parameter transformations since the transformations induced by f1 and f2 do not commute,
i.e. the Lie bracket

[
Xf1 , Xf2

] �= 0.
In the first case, when Xf1 is followed by Xf2 , instead of (32) we receive a 2-parameter

family of equations of state(
P +

a

V 2
τ
)

(V − bt) = NRT. (33)

The result is different if Xf2 is followed by Xf1 for which(
P +

a

(V − bt)2
τ

)
(V − bt) = NRT. (34)

As a matter of fact, equation (34) for t = τ = 1 reproduces exactly the standard van der Waals
equation.

We hope that it should be possible to find a single function f which would allow us to
obtain the van der Waals equation of state from the one for the ideal gas in just one step.

The last example is the standard Legendre transformation.

Example 5 (partial Legendre transformation). Let us consider again a seven-dimensional TPS
with local coordinates (3) and go over to new coordinates given by

x0′ = x0 + p2x
2, p1′ = p1, p2′ = −x2, p3′ = p3,

x1′ = x1, x2′ = p2, x3′ = x3.
(35)
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This is a partial Legendre transformation which gives transition from the energy representation
to the enthalpy representation

(U ; S, V,N;−T , P,−µ1) ⇐⇒ (H ; S, P,N;−T ,−V,−µ1). (36)

Obviously the enthalpy H is equal to H = U + PV , and under this transformation θU goes
over into the contact form θH = dH − T dS − V dP − µ dN connected with the enthalpy
representation. The Jacobi matrix of transition (35) has determinant equal to 1, so it is a strict
contact transformation.

Of course, we could have taken another Legendre transformation and go over to other
representations. However, let us repeat that no Legendre transformation gives transition from
the energy to the entropy representation. This can be accomplished only by a more general
genuine contact transformation with ρ = T −1 �= 1. On the other hand, the entropy S is
connected by Legendre transformations with the Massieu functions [1, 2].

4. The structure group of TM 2n+1

In the following, the (n + 1)-dimensional Gibbs space (GS) will be denoted by Mn+1 while the
(2n + 1)-dimensional TPS will be denoted by M2n+1 or (M2n+1, θ).

As mentioned before, the Gibbs space Mn+1 has no distinguished structure, therefore one
can only consider the group of general diffeomorphisms of GS, i.e. the group Diff Mn+1. As a
result, the structure group of its tangent bundle T Mn+1 is the general linear group GL(n+1, R)

and it is not obvious how it could be reduced to any of its subgroups.
Things look quite different if instead of GS one takes the (2n + 1)-dimensional TPS

(M2n+1, θ). As it was explained above, TPS has a contact structure and this allows us to
reduce the structure group of T M2n+1 to subgroups of GL(2n + 1, R).

Before doing this, we shall first recall briefly the notion of transition functions for fibre
bundles [15–17].

Let {Oα} be an open covering of M2n+1 and let π−1(Oα) = T M2n+1|Oα
, where

π : T M2n+1 → M2n+1 stands for the standard projection in the tangent bundle. Let now
ψα : π−1(Oα) → Oα × R

2n+1 be a local trivialization of T M2n+1. Then ψαβ := ψα ◦ ψ−1
β is

a diffeomorphism of Oαβ × R
2n+1, where Oαβ = Oα ∩ Oβ . Restricted to x ∈ Oαβ, ψαβ(x)

is an isomorphism of the typical fibre F of the bundle. Of course, in our case F = R
2n+1

and thus all ψαβ form the group GL(2n + 1, R). The functions ψαβ treated as mappings
ψαβ : Oα ∩ Oβ → GL(2n + 1, R) are called transition functions for T M2n+1 with respect to
the covering {Oα}.

Now, because θ is defined on TPS globally and the volume form � := θ ∧ ( dθ)n �= 0
cannot change sign, M2n+1 is orientable [15, 16]. Let us assume that the orientation
be positive. Then GL(2n + 1, R) can be reduced to GL+(2n + 1, R), the group of real
(2n + 1) × (2n + 1) matrices with positive determinant. Moreover, GL+(2n + 1, R) may be
reduced to SL(2n + 1, R), the group of (2n + 1) × (2n + 1) matrices of determinant one. This
last reduction is justified by the fact that in each fibre TxM we may choose 2n + 1 linearly
independent vectors (a basis) v1, . . . , vk, . . . , v2n, v2n+1 such that

(θ ∧ (dθ)n)(v1, v2, . . . , v2n, v2n+1)

=
∑

σ

sgn(σ )θ(vσ(1)) dθ(vσ(2), vσ(3)) . . . dθ(vσ(2n), vσ(2n+1)) = 1, (37)

where the symbol σ denotes permutation of 1, 2, . . . , 2n, 2n + 1.
We may go even further because every differential manifold M allows a Riemannian metric

[15] and thus we may choose an orthonormal basis and reduce SL(2n+ 1, R) to SO(2n+ 1, R).
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To this end let us recall that any contact manifold (M2n+1, θ) allows a Riemannian metric
[18, 19], and in fact an infinite number of Riemannian metrics which are in a sense compatible
with the contact structure. In this paper we shall give two examples of such metrics. Their
partial compatibility with the contact structure may be seen e.g. from the term θ ⊗ θ which
they contain (see below), although other reasons also exist [8].

To discuss the problem of metric more thoroughly let us denote for a moment all variables
(3) on M2n+1 uniformly by yµ and yν , µ, ν = 0, 1, . . . , 2n, where

y0 = x0, yi = pi, yn+i = xi, i = 1, . . . , n. (38)

The metric most frequently used in contact geometry, often called the Sasaki metric, has the
form [18, 19]

dl2 ≡ gµν dyµ dyν = θ ⊗ θ + dpi dpi + dxi dxi, (39)

where dyµ dyν = (1/2)(dyµ ⊗ dyν + dyν ⊗ dyµ). Without the term θ ⊗ θ the metric would
be Euclidean but degenerate. In the contact coordinates (3) it takes the form

dl2 = dx0 dx0 + 2pk dx0 dxk + δik dpi dpk + (δik + pipk) dxi dxk, (40)

or in the matrix block form its components are given by

(gµν) =




1 0 p1 · · · pn

0 In 0
p1
... 0 δik + pipk

pn




, (41)

where In denotes an n × n unit matrix.
This metric has been used by Hernández and Lacomba in a paper entitled Contact

Riemannian Geometry and Thermodynamics published in 1998 [12]. The metric (39) has
nice geometric properties, in particular the vectors ξ,Pk,Xk form an orthonormal basis
for (M2n+1, θ, g). Thus, SL(2n + 1, R) can be reduced to SO(2n + 1, R). Unfortunately,
thermodynamical meaning of the Sasaki metric is not known, neither on the full TPS nor on
the Gibbs space, nor on the Legendre submanifolds θ = 0. Till now no physical applications
of this metric are known.

The question how to introduce a metric on the space of thermodynamic variables has
been discussed for decades with various intensities. A new impulse in this direction was given
after 1975 by a series of five papers by Weinhold [20]. Weinhold’s metric tensor was defined
only on the n-dimensional surface of thermodynamic states embedded in (n + 1)-dimensional
Gibbs space (in our approach this surface corresponds to a projection of S from TPS to GS).
Components of this metric tensor were given by the second derivatives of the internal energy
function. These five papers were followed by dozens of papers discussing the meaning of
this metric from various points of view. In particular, many authors discussed the question of
metric on the ambient (n + 1)-dimensional Gibbs space which would reduce to the Weinhold
metric.

Another approach to the thermodynamic metric is connected with applications of
differential geometry to probability and statistics, and consequently to statistical physics.
The notion of relative entropy (or relative information) served as a means for introducing
a metric in the family of probability distributions. More information and literature on this
topic can be found in [8]. Metrics derived from relative entropy have been applied to various
thermodynamic systems. The Riemann scalar curvature has been computed and it has been
interpreted in terms of fluctuation theory or stability of the considered systems.
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The metric based on the concept of relative entropy suggested us a new type of metric on
TPS. Using the contact coordinates (3) and the contact form θ this new metric (denoted by
capital G) has the form [8]

dl2 ≡ Gµν dyµ dyν = θ ⊗ θ + dpi dxi (42)

= dx0 dx0 + 2pi dx0 dxi + dpi dxi + pipj dxi dxj ,

and the matrix of its components is

(Gµν) =




1 0 p1 · · · pn

0 0 1
2In

p1
... 1

2In pipj

pn




. (43)

Actually, only the term dpi dxi was derived in statistical physics from relative entropy.
However, there pi were given by first-order derivatives of a thermodynamic potential, say
pi = −∂φ/∂xi , where the potential φ was a function of n independent variables xk and its
physical meaning depended on the probability distribution used; φ was proportional to the
logarithm of the appropriate partition function.

Thus the term dpi dxi , if applied to an n-dimensional space of thermodynamical states
(parametrized by x1, . . . , xn), gives the Weinhold metric. So, it could be interpreted
thermodynamically in terms of stability conditions. Note that the term θ ⊗ θ does not
contribute if the metric is restricted to the Legendre submanifold θ = 0. It was added only
with the purpose of removing degeneracy of the metric dpi dxi on TPS.

The meaning of the metric (42) on the full TPS and on the Gibbs space is not known
yet. Nevertheless, some of its geometrical properties on TPS have been found and will be
published in another paper. Let us mention only that the 2n + 1 vectors ξ,Pk,Xk do not
form an orthogonal basis for this metric. However, the vector ξ in this metric is in each
point orthogonal to the corresponding contact hyperplane spanned by Pk and Xk . This is
sufficient for our purposes because it is possible to construct an orthogonal basis in each
contact hyperplane by taking linear combinations of Pk and Xk .

To continue the reduction procedure let us again turn to the fact that θ defines on M2n+1 two
complementary distributions, D and � of dimensions 2n and 1 respectively, so SO(2n + 1, R)

can be reduced to SO(2n, R) × SO(1, R) = SO(2n, R) × 1 ∼= SO(2n, R), where SO(2n, R)

acts on D and SO(1, R) on �. In local contact coordinates dθ is equal to dθ = dpi ∧ dxi ,
therefore the matrix J of its coefficients is equal to

J = 1

2

(
0 In

−In 0

)
. (44)

Because dθ is non-degenerate on D (as a matter of fact dθ is a symplectic form on D)
and SO(2n, R) acts on D, we may restrict ourselves to transition functions (transformations)
which do not change dθ , i.e. to ψαβ ≡ H commuting with J ; HJ = JH or HJHT = J

because for H ∈ SO(2n, R) the transpose HT of H is equal to H−1. Thus our group has
been additionally reduced to the intersection of the symplectic and orthogonal groups, i.e. to
Sp(2n, R) ∩ O(2n) × 1.

However, the commutation condition of J and H requires that H be of the form

H =
(

A B

−B A

)
, (45)

where A and B denote n × n matrices with real entries. The matrices of type (45) form a
subgroup of GL(2n, R); let us denote it by K. Moreover, the subgroup K is isomorphic with the



Structure group U(n) × 1 in thermodynamics 10915

general linear complex group GL(n, C), i.e with the group of non-singular n×n matrices with
complex entries because any matrix Q of GL(n, C) can be written in the form Q = A + iB,
where i = √−1 and A and B are real n × n matrices. The isomorphism ϕ : GL(n, C) → K
is then given by the formula

ϕ(A + iB) =
(

A B

−B A

)
= H. (46)

Our reduced group can be thus written in the form Sp(2n, R) ∩ GL(n, C) × 1 and also
in the form O(2n, R) ∩ GL(n, C) × 1 ≡ U(n) × 1. This is the final result of the reduction
procedure. The last point can be easily inferred by considering the inverse ϕ−1 of ϕ for which
we have

[ϕ−1(H)]† = ϕ−1(H)
T = A + iB

T = (A − iB)T = ϕ−1(HT ) = ϕ−1(H−1) = [ϕ−1(H)]−1.

(47)

Thus one can see that ϕ−1(H) is a unitary matrix.
The consecutive steps of the whole reduction procedure described above can be therefore

summarized in the following diagram:

GL(2n + 1, R) −→ GL+(2n + 1, R) −→ SL(2n + 1, R) −→ SO(2n + 1, R)

−→ SO(2n, R) × SO(1, R) ≡ SO(2n, R) × 1

−→ Sp(2n, R) ∩ O(2n) × 1 −→ GL(n, C) ∩ O(2n) × 1

= U(n) × 1. (48)

Let us remember that the symplectic group has the property [3]

Sp(2n, R) ∩ O(2n) = Sp(2n, R) ∩ GL(n, C) = GL(n, C) ∩ O(2n) = U(n), (49)

and this can be recognized in the reduction procedure.

5. Conclusions

We have just shown that for a thermodynamic phase space (M2n+1, θ), the structure group of
its tangent bundle can be reduced to U(n) × 1.

Therefore, a manifold M2n+1 can be the space of thermodynamic states if its principal
bundle can be reduced to the bundle with the group U(n) × 1. This is not possible for an
arbitrary (2n + 1)-dimensional manifold M2n+1. It means that among all (2n + 1)-dimensional
manifolds we may choose only a subclass of such manifolds for which the structure groups of
their tangent bundles reduce to U(n) × 1.

The last two formulae of section 4, (48) and (49), contain a lot of information about the
symmetries of thermodynamics. They tell us how these symmetries are related e.g. to the
symplectic and orthogonal groups. They also tell us, for instance, that—against the common
belief—in thermodynamics we are not confined only to Legendre transformations. Section 3
gives a few examples of more general contact transformations.

As a last remark let us stress that although examples of θ were given only for fluid systems,
it should be obvious that the whole formalism applies to any thermodynamic system, e.g. to
magnetic systems, and to any representation.
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